

Cost-Effectiveness of Epidermal Growth Factor Receptor Gene Mutation Testing for Patients with Advanced Non-Small Cell Lung Cancer

Wendong Chen MD, PhD¹; Peter Ellis MD, PhD²; Leslie Levin MD³; Murray Krahn MD, MSc¹

- 1. THETA, University of Toronto
- 2. Department of Medicine, McMaster University
- 3. Medical Advisory Secretariat, MOHLTC

Background

- Systemic cytotoxic treatment for advanced NSCLC has reached a plateau
- New approaches for NSCLC: targeting EGFR pathway
 - Monoclonal antibody
 - EGFR tyrosin kinase inhibitors (TKI): erlotinib and gefitinib

- Biomarkers to predict the response of TKI
 - EGFR gene mutation on exons 18-21
 - High EGFR gene copy number
 - EGFR over expression
 - K-ras mutation

Objective

 To conduct a cost-effectiveness analysis to assess the benefits and costs for using EGFR gene mutation testing to guide the selection of *gefitinib* as *first-line* therapy in patients with advanced NSCLC under the perspective of MOHLTC

Framework

Descriptions of Scenarios

Decision Analytical Model

M1: Scenario 1; M2: Scenario 2; M3: Scenario 3

Markov Models for Scenarios

Model Parameters

- Time horizon: lifetime
- Cycle length: 3 weeks
- Perspective: Ontario Ministry of Health and Long-Term Care
- Benefits:
 - Life years
 - Quality adjusted life years (QALY)
- **Costs:** Direct medical costs (2010 CAN\$)
- **Discount rate:** 5% per annum for benefits and costs

Data Sources

- Probability
 - Distribution of NSCLC: squamous vs. non-squamous
 - Prevalence of EGFR gene mutation
 - Failure rate of EGFR gene mutation testing
 - Efficacy of treatments
- Utility
 - Under treatment
 - Post-treatment
 - Best supportive care
- Cost
 - EGFR gene mutation testing
 - Drugs
 - Care for treatments
 - Best supportive care

Types of NSCLC squamous vs. non-squamous

- Data source: Canadian Cancer Registry 1992-2007
- Total cases of squamous type: 63,199
- Total cases of NSCLC: 274,013
- Proportion of squamous type:
 - 23.1%, 95% CI: 22.9% to 23.2%

EGFR Mutation Prevalence

- **Data bases:** MEDLINE and EMBASE
- Search strategy: Any population based studies screening EGFR gene mutation among patients with NSCLC
- Search result: 1 study (Rosell 2009)
- **Prevalence:** 16.6%, 95% CI: 15.0% to 18.2%

EGFR Mutation Testing

- Mutation site: exon 19 and 21 of EGFR gene
- Data source: Tsao 2005
- Failure due to inadequate tissues
 - 32.3%, 95% CI: 27.1% to 37.5%
- Failure due to other reasons
 - 1.8%, 95% CI: 0% to 3.9%

Utility Estimation

Direct Medical Costs

Base Case Analysis

1. Cost-utility analysis

Strategy	Cost	Incr Cost	QALY	Incr QALY	C/E	ICER
No testing	\$14,368		0.2881		\$49,864	
EGFR mutation testing	\$16,857	\$2,488	0.3188	0.0307	\$52,869	\$81,071

2. Cost-effectiveness analysis

Strategy	Cost	Incr Cost	Life years	Incr life years	C/E	ICER
No testing	\$14,369		0.4842		\$29,675	
EGFR mutation testing	\$16,857	\$2,488	0.5383	0.0541	\$31,317	\$46,021

One-Way Sensitivity Analysis

Difference in ICER

Probabilistic Sensitivity Analysis Acceptability Curve

Lifetime Direct Medical Costs

Budget Impact Analysis

Differences between the two strategies from 2011 to 2015

Main Limitations

- The efficacy of conventional chemotherapy was assumed unchanged in patients who failed with gefitinib as firstline therapy
- Lack of population based data for the patterns of care and health resources utilization in Ontario
- The approach of utility estimation needs validation

Conclusion

- The cost-effectiveness of using EGFR gene mutation testing for patients with advanced NSCLC is considered attractive when WTP is over \$81,000 per QALY
- The cost-effectiveness of EGFR gene mutation testing is highly sensitive to the efficacy and cost of gefitinib
- More research is needed to clarify the existing uncertainty

Acknowledgements

- Dr. Suzanne Kamel-Reid
- Dr. Jeremy Squire
- Dr. Natasha Leighl
- Dr. Richard Gregg
- Dr. Hamid Reza Nakhai-Pour
- Ms. Michelle Bornstein

